61 (95%CI: 1.08-2.39) (figure 2) (Table 2). There was heterogeneity among studies (p for heterogeneity = 0.04, I2 = 0.55). Sensitivity analysis showed that the result was also not robust (figure not shown). There was no small-study bias among the studies (Egger’s p = 0.65). Figure 2 Forest plot of the RE ORs and 95% CIs of the studies on the association between HCC and the HFE C282Y mutation (Y vs. C) of seven studies (using healthy controls). (2) Four studies used alcoholic LC patients as controls. Four studies included 224 HCC patients with alcoholic LC and 380 alcoholic LC patients without HCC.
Meta-analysis provided more distinct association of C282Y polymorphism with HCC among alcoholic LC patients. FE OR reached 4.06 (95%CI: 2.08-7.92, p for heterogeneity = 0.77, I2 = 0) in the dominant model (Figure 3), and 3.41(95%CI: 1.81-6.41, #{Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| randurls[1|1|,|CHEM1|]# p for heterogeneity = 0.47, I2 = 0) as allele Y compared with allele C, respectively (Table 2). Sensitivity analyses of two models both gave robust results. Figure 4 showed the sensitivity analysis of the dominant model. There was no small-study bias (Egger’s p: 0.25-0.43). Figure 3 Forest plot of the FE ORs and 95% CIs of the studies on the association between HCC and the HFE C282Y mutation (YY+CY www.selleckchem.com/products/nvp-bsk805.html Vs. CC) of four studies (using alcoholic LC controls). Figure 4 Sensitivity analysis of the association of C282Y (YY+CY vs. CC) and HCC among alcoholic LC patients of four studies,
in which the meta-analysis estimates were computed omitting one study at a time. The results indicated the association was robust. (3) Meta-analysis of four studies that used viral LC patients as controls (including 160 case and 203 controls) showed both dominant model and allele contrast had a non-significantly decreased risk of HCC (FE TCL OR = 0.70, 95%CI: 0.32-1.50 and FE OR = 0.71, 95%CI: 0.34-1.50, respectively). There was no small-study bias among studies (Egger’s p = 0.51 and 0.52, respectively) and no
heterogeneity among studies (I2 = 0) (figure not shown). H63D Eight studies (included 958 cases and 2258 controls) provided H63D genotype data. Variant D allele frequency was 16.81% (322/1916) in cases and 14.32% (657/4516) in controls, respectively. Overall, this meta-analysis did not show H63D polymorphisms had influence on HCC occurrence. FE OR was 1.19 (95%CI: 0.90-1.58, p for heterogeneity = 0.01, I2 = 0.60) and1.08 (95%CI: 0.83-1.39, p for heterogeneity = 0.01, I2 = 0.61) in the dominant model and allele contrast model, respectively (figure not shown). There was no small-study bias among studies (Egger’s p = 0.62 and 0.34, respectively). We also performed subgroup meta-analysis according to the characteristics of controls (healthy controls and chronic liver diseases controls), but all genetic models did not show evidence of associations with HCC (detailed data not shown). The statistic power is an important issue on gene-disease association study.