Backward elimination was

Backward elimination was selleck inhibitor used to select variables, with P > 0.1 as the elimination criterion. A shrinkage factor was applied to log odds ratios after model fitting before validation [29]. The same model was also fitted by using complete data without any imputation, to assess for any effects of imputation. The results were consistent with the multiple-imputation analysis, although the parameters were estimated with greater precision with imputation (data not shown). The Amsterdam data were not included in this complete analysis without imputation, because time to emergency department was not recorded at this center.Two training-validation dataset scenarios were used. First, TR-DGU data from Germany were used for external validation [30], with all other data used for training.

The German TR-DGU registry data contributed 1,705 patients, 30% of the total dataset, and was considered to be of a suitable size for validation. Further, no data were missing. As a second (internal) validation, data were split randomly with 60% of patients from each center in the training dataset and 40% in the validation dataset. Calibration [31] and receiver operating characteristic (ROC) plots were examined, along with sensitivity and likelihood ratio, at 90% specificity. The calibration plot was formed by predicting the likelihood of massive transfusion for each patient in the validation dataset [32]. Individuals were then grouped by predicted probability, and these groups were compared with the observed transfusions received. After validation, the model was evaluated with the full dataset.

We examined between-center variation in the performance of the model to investigate the effect of center-specific transfusion practices. For these purposes, the model including variables chosen from the previous two analyses was fitted, and the predictive value was tested in each center separately to see how variable this was. All statistical analyses and graphics were produced in Stata version 10.1 (StataCorp, 4905 Lakeway Drive, College Station, TX, USA).ResultsIn total, 5,693 patient records were available for analysis. Patient demographics, injury characteristics, admission physiology, base deficit, and prothrombin times are shown in Table Table1.1. Records of 2,497 (44%) patients had a complete set of observed covariates, whereas one covariate was missing in 1,788 (31%) and two (14%) in 850.

Mortality increased as transfusion requirements increased (Figure (Figure1).1). No threshold effect was seen Entinostat at 10 units or any other value of PRBC transfusions. Mortality was 426 (9%) of 4,808 in patients who received none to five PRBC units, 82 (22%) of 367 in patients receiving six to nine PRBC units, and 217 (42%) of 518 in patients receiving 10 or more PRBC units. The fractional polynomial model for transfusion-associated probability of death, adjusting for any institution effect, is shown in Figure Figure2.2.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>