The highly selective cyclooxygenase-2 inhibitors SC-58236 and NS-

The highly selective cyclooxygenase-2 inhibitors SC-58236 and NS-398 both counteracted the status epilepticus-associated increase in P-glycoprotein expression in the parahippocampal JQ1 price cortex and the ventral hippocampus. In line with our working hypothesis, a sub-chronic 2-week treatment with SC-58236 in the chronic epileptic state kept P-glycoprotein expression at control levels. As described previously, enhanced P-glycoprotein expression in chronic epileptic rats was associated with

a significant reduction in the brain penetration of the antiepileptic drug phenytoin. Importantly, the brain delivery of phenytoin was significantly enhanced by sub-chronic cyclooxygenase-2 inhibition in rats with recurrent seizures.

In conclusion, the data substantiate targeting of cyclooxygenase-2 in the chronic epileptic brain as a promising strategy to control the expression levels of P-glycoprotein despite recurrent seizure activity. Cyclooxygenase-2 inhibition may therefore help to increase concentrations of antiepileptic drugs at the target sites in the epileptic brain. It needs to be further evaluated whether the approach also enhances efficacy. (C) 2009 Elsevier Ltd. All rights reserved.”
“Substance P (SP) is co-localized and co-released with gamma-amino butyric acid (GABA) from approximately 50%

of GABAergic medium spiny neurons (MSNs) in the striatum. MSNs innervate several cellular selleck targets including neighboring MSNs and cholinergic

interneurons via collaterals. However, the functional Avapritinib mw role of SP release onto striatal interneurons is unknown. Here we examined SP-mediated actions on inhibitory synaptic transmission in cholinergic interneurons using whole-cell recordings in mouse corticostriatal slices. We found that SP selectively suppressed GABA(A) receptor-mediated inhibitory post-synaptic currents (IPSCs), but not excitatory post-synaptic currents(EPSCs) in cholinergic interneurons. In contrast, SP did not alter IPSCs in fast-spiking interneurons and MSNs. SP suppressed IPSC amplitude in a concentration-dependent and reversible manner, and the NK1 receptor antagonist RP67580 attenuated the SP-mediated suppression. In addition, RP67580 alone enhanced the evoked IPSC amplitude in cholinergic interneurons, suggesting an endogenous action of SP on regulation of inhibitory synaptic transmission. SP did not alter the paired-pulse ratio, but reduced the amplitudes of GABA(A) agonist muscimol-induced outward currents and miniature IPSCs in cholinergic interneurons, suggesting SP exerts its effects primarily at the post-synaptic site. Our results indicate that the physiological effects of SP are to enhance the activity of striatal cholinergic interneurons and provide a rationale for designing potential new antiparkinsonian agents. Published by Elsevier Ltd.

Comments are closed.