The
methodology of how to compare different models and its results are described in the next chapter. Results and discussion Comparison of marginal abatement cost curves According to the IPCC AR4 (IPCC 2007), mitigation potentials are defined as “the scale of GHG reductions that could be achieved, relative to emission baselines, for a given carbon price (expressed in cost per unit of carbon dioxide equivalent emissions avoided or reduced)”. Thus, MAC is defined as the abatement costs of a unit reduction of GHG emissions relative to emission baselines. This comparison study follows the same definition and MAC curves in 2020 and 2030 in major GHG emitting countries are shown in Fig. 1 by plotting mitigation potentials MK5108 relative to the baseline for the each model at a certain carbon price. These MAC curves imply technological mitigation potentials and technological implementation costs resulting from the bottom-up approach,
which considers various factors such as the current level of energy efficiencies, Sotrastaurin cell line difference of socio-economic characteristics by country, and scope of renewable energies. Fig. 1 Comparison of marginal abatement cost (MAC) curves in 2020 and 2030 in major greenhouse gas (GHG)-emitting countries and regions. a Japan in 2020 and 2030. b China in 2020 and 2030. c India in 2020 and 2030. d Asia in 2020 and 2030. e US in 2020 and 2030. f EU27 in 2020 and 2030. g Russia in 2020 and 2030. h Annex I in 2020 and 2030. i Non Annex I in 2020 and 2030 However, even at the same carbon price in the same country, mitigation potentials vary widely according to the model, especially for higher carbon pricing both in developed and developing countries. The differences in MAC curve features are caused by various factors in the bottom-up analyses; for example (1) the
Poziotinib purchase settings of socio-economic data and other driving forces; (2) the settings of key advanced technologies and their future portfolios; (3) the assumptions of energy resource restrictions and their portfolios, Bortezomib chemical structure and future energy prices; (4) model components such as the coverage of target sectors, target GHGs, and mitigation options; (5) coverage of costs, such as initial cost, operation and management costs, transaction costs, and related terms, such as the settings of the discount rate and payback period; (6) base year emissions; and (7) the assumptions of baseline emissions. It is important to focus on all these differences when comparing the robustness of MAC curves, but it is difficult to compare all the factors because a MAC curve is a complicated index based on complex modeling results. Consequently, this comparison study focuses on some of these factors in order to analyze the differences in MAC curves.