Over the past decade, there have been many efforts for controlling the structural and morphological properties of the 1D ZnO nanostructures with high density and uniformity because their size, shape, distribution, and crystallinity are closely related to the physical properties [8–10]. Furthermore, the hierarchical architectures built by the 1D ZnO nanostructures with 2D or 3D templates, which look like flowers or urchins, have potentially exhibited the improvements of device performance due to the highly extended surface area and density [11–14]. Nowadays, some vigorous attempts begin to be focused on the growth and deposition
of the 1D ZnO nanostructures on various functional material substrates, for example, PF-02341066 mw indium PD0332991 price tin oxide-coated polyethylene terephthalate (i.e., ITO/PET) films, metal foils, graphenes, and cellulose fibers, thus leading to the merits of flexible and bendable feasibility with light weight and low cost [15–18]. On the other hand, the fabrication technique
of conductive textiles (CTs) has been considerably developed by utilizing an electroless metallization of polymer fibers, and thus they have been used for electromagnetic interference shielding fabrics and flexible electrodes [19, 20]. In addition, the CTs can be a promising candidate as substrate for integrating the 1D ZnO nanostructures by employing the electrochemical deposition (ED) method. When electrons are supplied into the conductive surface in growth solution, ZnO nanorods can be readily synthesized and controlled at a low temperature by varying the external cathodic voltage [15, 21]. Therefore, the ED process with CT substrate can be a powerful and convenient fabrication method for preparing the vertically
aligned 1D ZnO nanostructures on a conductive and flexible substrate. In this paper, we synthesized and controlled the integrated ZnO nanorod arrays (NRAs) on nickel (Ni)-coated PET fiber CTs by ED method with different external cathodic voltages. For more regular and dense ZnO NRAs, the CTs were coated by the ZnO seed solution, and the samples were treated by ultrasonic agitation during ED process. Methods All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA), which were of analytical grade. To synthesize the ZnO NRAs on CT substrates, we used the commercially Dimethyl sulfoxide available CT substrates which consisted of woven Ni-plated PET (i.e., Ni/PET) fibers. For preparing the working substrate, the CT substrate of 3 × 3 cm2 was cleaned by ethanol and deionized (DI) water in ultrasonic bath for 10 min, respectively, at room temperature. The seed Z IETD FMK solution was made by dissolving the 10 mM of zinc acetate dehydrate (Zn(CH3COO)2 2H2O) in 50 ml of ethanol and by adding 1.5 wt.% of sodium dodecyl sulfate solution (CH3(CH2)11OSO3Na). After that, the CF substrates were dipped into the seed solution and pulled up slowly.