Their molecular weights were confirmed by electrospray ionization

Their molecular weights were confirmed by electrospray ionization-mass spectrometry (ESI-MS). The IAb-restricted HBV core antigen-derived T helper epitope (sequence 128–140: TPPAYRPPNAPIL) was used in the in vivo assay. Peptides were dissolved in DMSO at a concentration of 100 mm and stored at −20 °C.

Blood samples and cell line.  Peripheral blood samples were obtained from six HLA-A*02+ healthy donors. The sample collection was approved by the ethics committee of Zhengzhou University. The human find more TAP-deficient T2 cell line (HLA-A*0201-positive) was a generous gift from professor Yu-zhang Wu (Third Military Medical University, China). The human oesophageal carcinoma cell line EC-9706 (HLA-A2-positive, COX-2-positive [15]) was maintained in our laboratory, human oesophageal carcinoma cell line KYSE-140 (HLA-A2-positive, COX-2-negative) was a gift from professor Qiao-zhen Kang (Zhengzhou University, China), human colon cancer cell line HT-29 (HLA-A2-negative, COX-2-positive) was purchased from American Type Culture Collection (ATCC, selleck screening library Rockville, MD, USA). T2 cells and cancer cells were cultured in RPMI 1640 medium (Invitrogen, Grand island, NY, USA) supplemented with 100 units/ml penicillin, 100 units/ml streptomycin, 2 mm L-glutamine, and 10% foetal bovine serum (FBS, Hyclone).

All cells mentioned above were kept at 37 °C in a humidified Cytidine deaminase atmosphere containing 5% CO2. Mice.  HLA-A2.1/Kb transgenic mice, 8–12 weeks old, which express a chimeric heavy chain of the MHC-I molecule (α1 and α2 fragments of human HLA-A*0201, and transmembrane and intracytoplasmic domains of mouse H-2Kb), were kindly provided by professor Xue-tao Cao (Second Military Medical University, China). Mice were bred and maintained in a specific pathogen-free (SPF) facility. Peptide-binding assay.  To determine whether the synthetic peptides could bind to HLA-A*0201 molecule, peptide-induced

HLA-A*0201 upregulation on T2 cells was examined according to a protocol described previously [21, 22]. Briefly, T2 cells (1 × 106 cells/ml) were incubated with various concentrations of the candidate peptides and 3 μg/ml human β2-microglobulin (β2-M, Merck, Germany) in serum-free RPMI 1640 medium for 18 h at 37 °C in a 5% CO2 atmosphere. Then, cells were washed twice and incubated with the anti-HLA-A2 mAb, BB7.2 (Santa Cruz, USA), followed by treatment with FITC-labelled goat IgG anti-mouse immunoglobulin (Bioss, China). Cells were harvested and analysed by flow cytometry (FACSCalibur, Becton Dickinson, USA). The fluorescence index (FI) was calculated as follows: FI = [(mean fluorescence intensity (MFI) of the peptide – background) − (MFI of the PBS control group – background)]/[MFI of the PBS control group − background], the MFI value of the cells which were not incubated with peptides or antibodies was used as background.

These results suggest the possible role of glutamate excitotoxici

These results suggest the possible role of glutamate excitotoxicity in neuronal death in the midline selleck inhibitor thalamic region following kainic acid-induced status epilepticus

due to astrocytic EAAT2 downregulation following microglial activation showing upregulation of IL-1β and iNOS. “
“No source of bleeding is detected by angiogram in 15–20% of patients with nonaneurysmal subarachnoid hemorrhage (SAH). This negative angiographic finding might suggest a benign prognosis. We describe a case of fatal SAH caused by Aspergillus arteritis without formation of fusiform dilatation or aneurysms. A 76-year-old man with a 2-month history of progressive visual loss due to pachymeningitis

around the optic nerves suffered from SAH in the bilateral sylvian fissures. Repetitive serum galactomannan assay and angiography showed no abnormality. Post mortem examination revealed marked proliferation of Aspergillus in the granulomas of the frontal base dura mater. PI3K Inhibitor Library In addition, major trunks and several branches of the bilateral middle cerebral arteries were invaded by Aspergillus hyphae, which destroyed the walls in the absence of dilatation and aneurysms. Invasive aspergillosis of the CNS often forms a mycotic aneurysm. However, four autopsy cases of nonaneurysmal SAH due to invasive aspergillosis have been reported. The present case is the second autopsy case of Aspergillus arteritis without angiographic abnormality, acetylcholine resulting in fatal SAH. Aggressive and continuous antifungal therapy is absolutely necessary in suspected cases of invasive aspergillosis of the CNS, even if angiography is negative and therapeutic markers of aspergillosis are normal. “
“S. Sisó, L. González, R. Blanco, F. Chianini, H. W. Reid, M. Jeffrey and I. Ferrer (2011) Neuropathology and Applied Neurobiology37, 484–499 Neuropathological changes correlate temporally but not spatially with selected neuromodulatory responses in natural

scrapie Aim: Neuropathological changes classically associated with sheep scrapie do not always correlate with clinical disease. We aimed to determine if selected neuromodulatory responses were altered during the course of the infection as it has been described in Creutzfeldt–Jakob disease and experimental bovine spongiform encephalopathy. Methods: Hemi-brains from healthy sheep and natural scrapie cases at two stages of infection were examined for biochemical alterations related to the expression of type I metabotropic glutamatergic receptors (mGluR1) and type I adenosine receptors I (A1R), and of selected downstream intermediate signalling targets. Immunohistochemistry for different scrapie-related neuropathological changes was performed in the contralateral hemi-brains.

These effectors could arise naturally as the tumours develop, suc

These effectors could arise naturally as the tumours develop, such as the T cells seen in many melanoma patients,2,63,64 or from intentional

immunization with tumour-associated antigens,2–4 or could even be T cells that have been expanded and even genetically modified in vitro and adoptively transferred.65,66 Hence, although we have shown effects of the fusion protein as a single agent, probably enhancing innate responses and the endogenous T-cell response, we hypothesize that the fusion protein find more would be even more effective in conjunction with immunization schemes. In this context there are a wide variety of innovative approaches for initiating anti-tumour cellular immune responses that show substantial promise (reviewed in refs 1 and 67) as well as recent clinical successes in patients with prostate cancer.68,69 The data presented here represent the first ‘proof of principle’ of the protease-activated cytokine approach using specific

inhibition. Importantly, the tethered cytokine strategy using specific inhibition is a platform technology that could be employed RG-7204 with different immunomodulatory agents to either promote (e.g. IL-12) or inhibit (IFN-β or IL-10) cellular immune responses. This would be particularly useful for cytokines that have potent anti-tumour effects like IL-12 but systemic side-effects limit their usefulness when given systemically.11,70 The scFv format is particularly flexible in this regard. An scFv could be developed against almost any target molecule given the extremely large antibody repertoire in the scFv library and could be made against immunomodulators such as chemokines where the receptor approach is not easily implemented. It is also important to consider that the cytokine environment in the tumour would probably be affected in a cascade fashion as the infiltrating cells change. As a result, it may be possible to alter the balance of cytokines from the generally suppressive environment of the tumour, rich in a variety of immunosuppressive factors, enzymes and cells,1,71–74 to one that is conducive to an ongoing immune response leading to the eradication of

tumours. GPCR & G Protein inhibitor The authors would like to thank Drs Edward Messing and Baek Kim for encouragement and helpful suggestions, Dr Robert Rose and Christopher Lane for helpful advice on insect cell expression of proteins, and Drs Barth, Leddy, Courtney, Simon, Valentino and Cohen for comments on the manuscript. This work was made possible by generous gifts from Steven and Alison Krausz and F.C. Blodgett. John Puskas, Denise Skrombolas and Abigail Sedlacek were supported by 5T32AI00728 from the National Institutes of Health. None of the authors involved with this work has any financial interests or any other conflict of interest to disclose. “
“The effects of the soluble forms of the endotoxin receptor molecules sMD-2 and sCD14 on bacterial growth were studied.

TNFR1 is the primary signaling receptor that initiates the majori

TNFR1 is the primary signaling receptor that initiates the majority of inflammatory responses classically attributed to TNF. In contrast, TNFR2 is important in modulating TNFR1-mediated signaling by inducing the depletion of TNF receptor-associated factor 2 (TRAF2) and cellular

inhibitor of apoptosis1 (c-IAP1) proteins and accelerates TNFR1-dependent activation of caspase-8 12, 13. TNFR superfamily members can be classified into two main groups, death domain (DD)-containing receptors such as TNFR1, and TRAF-binding receptors such as TNFR2 that lack a DD 1, 2. Signaling via TNFR1 can have two outcomes. After binding of TNF, TNFR1 recruits the DD-containing adaptor molecule TNFR1-associated DD protein, which functions as a platform to recruit additional signaling molecules for the assembly of alternative selleck kinase inhibitor signaling complexes. One complex involves receptor-interacting protein and TRAF2

which links ligand-induced signaling to the activation of the transcription factors NF-κB and AP1 14–17. Another signaling complex is formed dependent on the internalization of activated TNF/TNFR1 complexes. During endocytosis FADD and caspase-8 are recruited to form the death inducing check details signaling complex resulting in TNF-induced apoptosis 2, 14, 15. In this study, we investigated the impact of TNFR2 on regulating cell death or survival as a result of TNFR1 signaling. We tested the hypothesis that in the absence of TNFR2, signaling via TNFR1 would promote cell survival by promoting NF-κB activation by the following mechanism. It is known TCL that TNFR2 signaling leads to the degradation of TRAF2 13. We postulated that in TNFR2-deficient cells, TRAF2 degradation is prevented and the relatively high intracellular levels of TRAF2 in these cells would promote TNFR1-induced NF-κB activation and cell survival. Our results support

this hypothesis. We showed that blocking TNFR2 signaling in anti-CD3+IL-2-activated WT CD8+ T cells resulted in elevated intracellular TRAF2 levels and an increase in their resistance to AICD. Furthermore, blocking anti-TNF-α antibodies significantly reduced TRAF2 accumulation in activated TNFR2−/− CD8+ T cells and increased their susceptibility to AICD. We found that AICD-resistant cells expressed elevated level of phosphorylated IκBα and higher DNA binding activity of the p65 NF-κB subunit, providing further support of our hypothesis that TNFR1 functions as a pro-survival receptor in TNFR2-deficient CD8+ T cells. The activation and differentiation of T cells are dependent on TCR-antigen interaction and the engagement of multiple molecules on the APC by receptors on the T cell. Previously, we demonstrated that TNFR2 not only lowers the threshold for T-cell activation but also provides early costimulatory signals during T-cell activation 6–8.

C albicans dimorphism (YH) was highly sensitive to geranium oil

C. albicans dimorphism (YH) was highly sensitive to geranium oil constituents tested (IC50 approximately 0.008% v/v). Geraniol, geranyl acetate and citronellol brought

down MICs of FLC by 16-, 32- and 64-fold respectively in a FLC-resistant strain. Citronellol and geraniol arrested cells in G1 phase while geranyl acetate in G2-M phase of cell cycle at MIC50. In vitro cytotoxicity study revealed that geraniol, geranyl acetate and citronellol were non-toxic to check details HeLa cells at MICs of the C. albicans growth. Our results indicate that two of the three geranium oil constituents tested exhibit excellent anti-Candida activity and significant synergistic activity with fluconazole. “
“Lobomycosis, a disease caused by the uncultivable dimorphic onygenale fungi Lacazia loboi, remains to date as an enigmatic illness, both due to the impossibility of its aetiological agent to be cultured and selleck chemicals grown in vitro, as well as because of its unresponsiveness to specific antifungal treatments. It was first described in the 1930s by Brazilian dermatologist Jorge Lobo and is known to cause cutaneous and subcutaneous localised and widespread infections in humans and dolphins. Soil and vegetation are believed to be the chief habitat of the fungus, however, increasing reports in marine mammals has shifted the attention to the aquatic environment. Infection in humans has also been associated with proximity to water, raising the hypothesis

that L. loboi

may be a hydrophilic microorganism that penetrates the skin by trauma. Although its occurrence was once thought to be restricted to New World tropical countries, its recent description in African patients has wrecked this belief. Antifungals noted to be effective in the empirical management of other cutaneous/subcutaneous mycoses have proven unsuccessful and unfortunately, no satisfactory therapeutic approach for this cutaneous infection currently exists. “
“Invasive aspergillosis (IA) presents a diagnostic and therapeutic dilemma for the physicians who take care of the patients with severe underlying diseases and immunosuppression. This study aimed to evaluate the usefulness of serum galactomannan (GM) measurements Docetaxel datasheet in the routine practice and surveillance of IA along with possible caveats in diagnosis and treatment. Adult patients with high-risk haematological malignancies admitted to the Internal Medicine wards during the 2-year study period were followed up by daily visits for vital signs, existing or newly developing signs and symptoms, clinical and laboratory findings. Blood samples were analysed for GM levels by the ELISA method at the end of the study period. Data of 58 hospitalisation episodes in 45 patients were analysed. Proven IA was diagnosed in one patient, probable IA was diagnosed in four patients. The sensitivity was 60% and the specificity was 21% when the index cut-off for positivity was accepted as 0.5.

Specific si

Specific GSK126 cell line modulatory effects of MSCs from human and experimental animal sources have

been described for the differentiation, activation, proliferation and effector functions of multiple innate and adaptive immune cells 5–11. Among these, MSC-mediated inhibition of primary T-cell activation and proliferation, suppression of DC maturation and promotion of regulatory phenotypes in monocyte/macrophages and T cells have been most extensively characterised 7–9, 11, 12. In keeping with a paracrine or “trophic” model of MSC function in vivo 13, various MSC-produced soluble mediators have been implicated in these immunomodulatory effects including IL-10, IL-6, HGF, TGF-β, chemokine ligand-2 (CCL2), HLA-G, NO, tumor necrosis factor-inducible gene 6 protein (TSG-6), prostaglandin E2 (PGE2) and kyneurenine 1, 2, 7, 9, 12, 14–16. For some such mediators, expression by MSCs may be dependent on pre-exposure to exogenous factors (e.g. IFN-γ, TNF) or on contact-dependent MSC/target cell cross-talk 2, 7, 16–19. The potential for harnessing MSC immunomodulatory

properties has been highlighted by results in pre-clinical models of autoimmunity, allotransplantation, sepsis and acute ischemic injury 1, 4, 7, 14, 15 as well as by outcomes from clinical trials in inflammatory bowel disease, graft-versus-host disease and myocardial infarction 1, 20. T cells represent the primary effector cells for common autoimmune Carnitine palmitoyltransferase II diseases and for rejection of transplanted organs and tissues 21. Furthermore, activated memory T cells have been implicated see more in non-antigen-specific forms of tissue injury such as ischemia-reperfusion 22, 23. In

addition to the investigation of mechanisms underlying MSC inhibition of T-cell activation, attention has also been directed toward their influence on specific T-cell effector phenotypes including CD8+ CTLs and the Th1, Th2 and Treg sub-types of CD4+ T cells which may be more or less prominent in individual immune-mediated diseases 12, 24–26. In vitro and in vivo experimental evidence would suggest that MSCs are consistently suppressive of CTL- and Th1-mediated immune responses while being less inhibitory toward Th2-type responses and actively promoting Treg survival and expansion 9, 12, 27. Less well understood for each of these subsets are the relative effects of MSCs on naïve T cells undergoing primary activation compared with previously activated, or memory-phenotype, T cells. The recent description of an additional CD4+ T-cell subset, termed Th17 cells, has added further complexity to our understanding of cellular adaptive immunity 28. The Th17 effector phenotype is characterised by synthesis of a signature cytokine, IL-17A, in addition to IL-17F, IL-21, IL-22 and CCL20 29.

The BLT mouse has become widely used to study human immunobiology

The BLT mouse has become widely used to study human immunobiology, and the findings presented here highlight important parameters for the generation of this model and its use. Overall, our data indicate that optimal human cell engraftment of BLT mice requires subrenal implant of thymic

tissues and low-dose irradiation. However, reasonable engraftment levels can be achieved in the absence of irradiation, and these BLT mice have an extended life span. Importantly, our study underscores the importance for considering Sirolimus molecular weight the duration of experiments when using NSG–BLT mice, as these animals develop an activated human T cell population after 20 or more weeks post-implant in most cohorts. We thank Jamie Kady, Meghan Dolan, Pamela St Louis, Linda Paquin, Michael Bates, Bruce Gott, Allison Ingalls, Michelle Farley and Rebecca Riding for excellent technical assistance. This work was supported by National Institutes of Health C59 wnt research grants AI046629 and DK032520, an institutional Diabetes Endocrinology Research Center (DERC) grant DK32520, a grant from the University

of Massachusetts Center for AIDS Research, P30 AI042845 and grants from the Juvenile Diabetes Research Foundation, International and the Helmsley Charitable Trust. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health. Michael A. Brehm is a consultant for The Jackson Laboratory. No other authors have conflicts of interest to declare. Fig. S1. Influence of the number of injected human CD34+ haematopoietic stem cells (HSC) on human cell chimerism in non-obese diabetic (NOD)-scid IL2rγnull- bone marrow, liver, thymus (NSG–BLT) mice. NSG mice were irradiated with 200 cGy (a,b)

or non-irradiated (c,d) were Interleukin-2 receptor implanted with 1 mm3 fragments of human fetal thymus and liver in the renal subcapsular space and then injected intravenously with the indicated number of CD34+ HSC derived from the autologous human CD3-depleted fetal liver. The peripheral blood of recipient NSG mice was screened for human CD45+ cell chimerism (a,c) and development of human CD3+ T cells (b,d) at 12 weeks after implant. Each point shown represents an individual mouse. Fig. S2. Engraftment levels of human CD45+ cells in female or male non-obese diabetic (NOD)-scid IL2rγnull (NSG) mice implanted with tissues from either male or female donors. Male or female NSG mice were irradiated with 200 cGy, implanted with 1 mm3 fragments of human fetal thymus and liver in the renal subcapsular space and then injected intravenously with 1 × 105 to 5 × 105 CD34+ haematopoietic stem cells derived from the autologous human CD3-depleted fetal liver cells. Tissues both male (a) and female donors (b) were used. The peripheral blood of recipient NSG mice was screened for human CD45+ cell chimerism at 12 weeks after implant.

This technique is by far the most successful NGS method to sequen

This technique is by far the most successful NGS method to sequence the P. falciparum genome. Many variations of the technique ITF2357 mouse were

developed specifically for the sequencing of the (A + T)-rich genome of the malaria parasite (6–8) (Figure 1). Over the last couple of years only, many studies have used Illumina®’s NGS technology to identify SNPs and other mutations linked to drug resistance in the murine malaria parasite P. chabaudi (9,10) and the human malaria parasite P. vivax (11). Other analyses have contributed to the characterization of the P. falciparum transcriptome with the discovery of new splicing events (12–14) and transcription start sites (15). Finally, Illumina®’s NGS technology was used to discover atypical features of P. falciparum’s chromatin (6,16)

and various epigenetic events (7). Currently, the future of high-throughput Selleckchem Anti-infection Compound Library sequencing seems to be leaning towards single-cell sequencing applications. Going further, third-generation sequencing (TGS) technologies propose to use single molecules as direct templates for sequencing (techniques so far under development at Helicos Biosciences and Pacific Biosciences). These TGS technologies should simplify the sample preparation procedure, avoid the bias introduce by DNA amplification and library preparation and be even more affordable than their predecessors. Nevertheless, the power of high-throughput Carnitine palmitoyltransferase II sequencing also represents one of the major pitfalls for the analysts.

The high-throughput and depth of quantitative measurements produced by NGS and TGS technologies come at the cost of producing sophisticated algorithms and software tools capable of accurately examining millions to billions of reads. The data generated by these methods are complex, novel and abundant. The computational and statistical analysis of raw outputs is the tricky step where incorrect normalization and processing can yield misleading conclusions. Novel methods of quantitative analysis are constantly under development and testing. There is yet no consensus on which analytical approach is the most accurate, particularly for the Plasmodium genome. The avalanche of whole-genome data over the past few years generated an immense source of knowledge that still requires maturing and processing. Nevertheless, in the near future, these powerful genomic approaches will certainly catalyse the transformation of this biological knowledge into viable therapeutic strategies. Single-cell sequencing will accelerate the genotyping of strains in patients’ blood sample or other field isolates. Comparative genomics then will be an important source of information regarding the evolution and dynamics of malaria parasites’ populations. Ultimately, such knowledge could be used for accurate diagnosis and targeted treatment of patients.

The mechanisms behind this differential response to hypoxia in ch

The mechanisms behind this differential response to hypoxia in chorionic plate arteries vs. veins require further experimentation (e.g., other agonists and levels of pretone; responses to hypoxia at different intraluminal flow rates; mechanism(s) of detection of hypoxic challenge; role of K+ channels in effect). To summarize, the effect of hypoxia on placental blood vessels is relatively poorly

studied. At the macro-level, increased vascular resistance can be elicited following hypoxic challenge; however, the physiological relevance of these observations remains open to question. At the individual vessel level, the effects of hypoxia are inconsistent and the mechanisms of detection/response remain unclear. In 2005, the International Union of Pharmacology published a number of reviews of K+ channel nomenclature and molecular relationships learn more that succinctly summarize our knowledge of this ion channel superfamily [19, 23, 38, 73]. K+ channel α-subunits form a diverse group, clearly demonstrated by the number of genes that encode for protein. This basic structural diversity is further complicated by post-translational assembly of α-subunits into heterotetramers which may be constructed of different channel isoforms;

each α-subunit may Atezolizumab mw be coupled to any one of a range of different accessory/associated proteins (e.g., β-subunits; sulphonylurea receptor). This ability to “blend” subunits together produces a diversity of K+ selective pores in cell membranes with subtly different properties. Given this diversity of structure, coupled with the ability of K+ channels to influence cell membrane potential, it is perhaps unsurprising that K+ channels appear central to the function of so many cells. A wide variety of K+ channels have been demonstrated to be functionally expressed Adenylyl cyclase in endothelial and smooth muscle cells derived from systemic [29] or pulmonary vessels [2, 22, 49]. Indeed flux of K+ from endothelial cells

has been suggested to play a key role in the EDHF response of many systemic arteries [15]. Of special interest to the placental vascular physiologist are data from pulmonary vascular studies which suggest that some K+ channels are oxygen sensitive or are indirectly sensitive to oxygenation levels via the effects that ROS have on channel kinetics [2, 44]. The general lack of data focusing on K+ channel expression (e.g., vascular vs. trophoblast; endothelium vs. smooth muscle; large vs. small caliber vessels) and function (e.g., in the control of vascular tone) within the placenta is therefore unexpected. Guiet-Bara et al. [20, 21] isolated smooth muscle and endothelial cells from placental allantochorial blood vessels. The authors noted that, using specific K+ channel blockers in smooth muscle cells preparations, KV, KCa, and KATP channels regulated cell membrane potential.

4 Constitutive TLR2 expression was observed in keratinocytes and

4. Constitutive TLR2 expression was observed in keratinocytes and in fibroblasts and endothelial cells located in the dermis of healthy skin (NI-MG). This expression of both receptors was considered a positive control. The absence of label was considered a negative control for the staining. In the NbI-MG, the cells around and within the inoculum expressed TLR2 during the period from 2 to 48 h PI. In the H&E staining, these cells showed morphology compatible with neutrophils, SCH 900776 macrophages,

and fibroblasts. At 10 days PI, the cells initiated granuloma organization. At 50 days and 6 months, the granuloma was completely formed; TLR2 expression was observed only in the neutrophil layer in direct contact with the granule, in the foam cells, in macrophages, and in some fibroblasts located in the periphery of the granuloma. Surprisingly, immunoreactivity to TLR2 was observed in the granule and in its periphery (bacterial growth zone). As shown in Fig. 5, TLR4 was constitutively expressed in keratinocytes, fibroblasts, and endothelial cells (Fig. 5a). In the NbI-MG,

immunoreactivity for TLR4 was observed from 2 to 48 h PI in cells with a granular cytoplasm (Fig. 5b); these were identified as mast cells by toluidine blue (Fig. 5c) and Giemsa staining. From 10 days PI onward, although there were numerous mast cells in the fibrosis zone, they showed no expression of this receptor. Its expression in keratinocytes and some muscle cells remained constitutive until the end of the https://www.selleckchem.com/products/gsk126.html study, although at a lower intensity in the later stages. In the ISSI-MG, constitutive expression of both TLRs was observed and remained without change during the study. We did not detect any inflammatory process

by H&E staining (data not shown). The binding of pathogen-associated molecular patterns to TLRs is an essential event in the innate immune response against infection, because it triggers signalling pathways resulting in the production of proinflammatory cytokines that, in turn, activate other innate Dimethyl sulfoxide immune cells for host defence and also link with the adaptive immune response. For this work, actinomycetoma was reproduced experimentally in a murine model and in situ TLR2 and TLR4 gene expression was studied during its clinical evolution. It was demonstrated that neutrophils and macrophages close to N. brasiliensis increased their TLR2 expression in the early stages of the infection. This finding suggests that some component of the N. brasiliensis wall acts as a TLR2 ligand, stimulating its expression and triggering intracellular signals that promote a proinflammatory response at the inoculated site. Consistent with this assumption, the interaction of TLR2 with Mycobacterium tuberculosis, mediated by ligands such as LpqH (Brightbill et al., 1999), LprA (Pecora et al., 2006), LprG (Gehring et al., 2004), and other molecules, initiates the cellular activation in response to infection. Therefore, we consider that similar molecules in N.