The expression of tppB was examined in mycelium from wild-type, Δ

The expression of tppB was examined in mycelium from wild-type, ΔtppB and tppB+. In the deletion mutant, no expression was detected, whereas in the complemented strain, the levels were in the same range as in the wild-type

(Figure 8B). From these experiments we concluded that the deletion of tppB causes the lowered trehalose levels in ΔtppB. However, since the plasmid carrying the wild-type version of the gene was lost in most conidia, the tppB+ strain was not included in the following experiments. Figure 8 Trehalose content of mycelium (A) and relative expression selleck chemicals of tppB (B). Error bars show standard error of the mean, based on three biological replicates, and for qPCR each biological replicate was calculated as the average of three technical replicates. To evaluate the importance of trehalose as a stress protectant, the trehalose contents of the ΔtppB mutant and the control strains were analyzed in early stages of germination, and were subjected to lethal and sub-lethal heat and oxidative stress as well as sub-lethal salt and acid stress. The trehalose levels in ΔtppB followed the same pattern of breakdown and re-synthesis as in the control strains, but they were consistently

lower in accordance with the lower initial value (Figure 9). Dormant conidia of ΔtppB were significantly less tolerant to heat stress compared to the control strains; After 60 min of heat stress, the survival of ΔtppB was 35% compared to 78% in wild-type. After an additional 60 min, Astemizole the survival of IWR1 ΔtppB further decreased to 2%

compared to 38% in wild-type. (Figure 10). These experiments were repeated with the new independent deletion mutant, ΔtppB2, and the results were identical to those for ΔtppB (data not shown). For the other stressors tested, benzoic acid, NaCl and H2O2, as well as long-term viability where conidia were stored in water at 4°C for a total of 8 weeks, no significant differences between the mutant and the control strains could be detected (data not shown). Figure 9 Concentration of trehalose during outgrowth of wild-type, pyrG +  and ΔtppB conidia. Note the scale break between 12 and 72 h and that pyrG + observations are horizontally offset to avoid visual overlap. The error bars represent the standard error of the mean. The level of trehalose in ΔtppB was significantly different compared to wild-type for all time points except 3 h (two-way ANOVA, P < 0.0001 at 0, 6 and 12 h, and P < 0.01 at 72 h). Figure 10 Viabilities of dormant A. niger conidia after subjection to heat stress. Conidia were held at 55°C for 20, 60, 90 and 120 min. For all strains, the numbers of counted colonies were normalized to 25 at time = 0 min to avoid differences in numbers of assayed spores. Note that pyrG + observations are horizontally offset to avoid visual overlap. There were no significant differences between the control strains (N402 and pyrG+).

7% in athletes during caloric restriction

lasting four to

7% in athletes during caloric restriction

lasting four to eleven weeks resulted in reductions of fat mass of 21% in the faster weight loss group and 31% in the slower loss group. In addition, LBM Pexidartinib increased on average by 2.1% in the slower loss group while remaining unchanged in the faster loss group. Worthy of note, small amounts of LBM were lost among leaner subjects in the faster loss group [13]. Therefore, weight loss rates that are more gradual may be superior for LBM retention. At a loss rate of 0.5 kg per week (assuming a majority of weight lost is fat mass), a 70 kg athlete at 13% body fat would need to be no more than 6 kg to 7 kg over their contest weight in order to achieve the lowest body fat percentages recorded in

competitive bodybuilders following a traditional three month preparation [4, 6, 17–20]. If a competitor is not this lean at the start of the preparation, faster weight loss will be required which may carry a greater risk for LBM loss. In a study of bodybuilders during the twelve weeks before competition, male competitors reduced their caloric intake significantly during the latter half and subsequently lost the greatest amount of LBM in the final three weeks [21]. Therefore, diets longer than two to four months yielding weight loss of approximately 0.5 to 1% of bodyweight weekly selleck screening library may be superior for LBM retention compared to shorter or more aggressive diets. Ample time should be allotted to lose body fat to avoid an aggressive deficit and the length of preparation should be tailored to the competitor; those leaner dieting for shorter periods than those with higher body fat percentages. It must also be taken into consideration that the leaner the competitor becomes the greater the risk for LBM loss [14, 15]. As the availability of adipose tissue declines the likelihood of muscle loss increases, thus it may be best to pursue a more gradual approach to weight loss towards the

end of the preparation diet compared to the beginning to avoid LBM loss. Determining macronutrient intake Protein Adequate protein consumption during contest preparation is required to support maintenance of LBM. Athletes require higher protein intakes to support increased activity check details and strength athletes benefit from higher intakes to support growth of LBM [5, 22–28]. Some researchers suggest these requirements increase further when athletes undergo energy restriction [13, 16, 22, 28–33]. Furthermore, there is evidence that protein requirements are higher for leaner individuals in comparison to those with higher body fat percentages [7, 33, 34]. The collective agreement among reviewers is that a protein intake of 1.2-2.2 g/kg is sufficient to allow adaptation to training for athletes whom are at or above their energy needs [23–28, 35–38]. However, bodybuilders during their contest preparation period typically perform resistance and cardiovascular training, restrict calories and achieve very lean conditions [2–6, 17–21].

Drug resistance in tuberculosis (TB) is a matter of great concern

Drug resistance in tuberculosis (TB) is a matter of great concern for TB control programs since these strains could spread in the community, stressing the need for early detection of drug resistance and subsequently initiation Nutlin-3a nmr of adjusted therapy. Conventional diagnosis of drug-resistance in MTB strains relies heavily upon mycobacterial culture and drug susceptibility testing in liquid or solid media. Usually, results are only obtained

after weeks to months of incubation and many developing countries lack the resources to establish the stringent laboratory conditions needed for these growth-based methods. From a clinical perspective, the existing growth-based diagnostics are too slow as patients undergoing treatment with drugs to which they are resistant, remain contagious, and those with XDR-TB and HIV often die before they are even diagnosed [6]. Major advances in molecular biology and the availability of new information generated after deciphering

the complete genome sequence of M. tuberculosis[7], Ibrutinib cell line have led to the development of new tools for rapid detection of drug resistance [8, 9]. Molecular methods are based on assigning the presence or absence of certain mutations in specific positions or genetic locations which are known to be associated with resistance [10]. About 95% of rifampicin (RIF) -resistant strains have mutations in the 81-bp core region of the rpoB gene encoding the β-subunit of the RNA polymerase, named RIF-Resistance Determining Region (RRDR) Silibinin [11]. In contrast to RIF, the situation for isoniazid (INH) is much more complex. Resistance mutations have been reported in at least 4 different genes including katG, inhA, ahpC and oxyR[10]. Meanwhile, resistance

against streptomycin (SM) has been reported to be associated with mutations in rrs gene, which codes for 16S ribosomal RNA, and rpsL coding for the ribosomal protein S12 [12] and these mutations are found in a limited proportion of clinically isolated SM-resistant M. tuberculosis strains. Recently, Okamoto et al. [13] found that mutations within the gidB gene which encodes a conserved 7-methylguanosine (m7G) methyltransferase specific for the 16S rRNA, is associated with low-level SM-resistance and are an important cause of resistance found in 33% of resistant M. tuberculosis isolates. Resistance to ethambutol (EMB) is primarily mediated by mutations in the embB gene, coding for an arabinosyltransferase participating in mycobacterial cell wall synthesis, with codon 306 being most frequently affected [14]. Furthermore, mutations in the embA[15, 16] and upstream of embC[16, 17] are also involved in EMB -resistance.

At all time points (24, 48 and 72 hours) IC50 was greater than 10

At all time points (24, 48 and 72 hours) IC50 was greater than 100 μg/mL. The screening

test for the JC cells with doses of 1, 10 and 100 μg/mL measured for 1 μg/mL: after 24 hours showed cell viability of 98%; after 48 hours 97%; and after 72 hours H 89 chemical structure 70%; for 10 μg/mL: after 24 hours cell viability showed 85%; after 48 hours 84%; and after 72 hours 21%; for 100 μg/mL: after 24 hours cell viability showed 77%; after 48 hours 84%; and after 72 hours 8%. At the time points 24 and 48 hours IC50 was greater than 100 μg/mL and at 72 hours IC50 was 2.5 μg/mL (95% confidence interval (C.I.) 0.22 to 28 μg/mL). A similar type of biological assay was performed with the find more purified

compound EPD at final concentrations of 1, 5 and 10 μg/mL for 24, 48 and 72 hours (Table 1). Percent of cell reduction for normal fibroblasts at 72 hours at the highest dose (10 μg/mL) was approximately 30%, while IC 50 was greater than 10 μg/mL. Screening tests for OVCAR3 and SKOV3 cells showed that more than 50% and 80% of cells were killed at doses of 5 and 10 μg/mL, respectively. Table 1 Cell viability with EPD treatment of normal fibroblasts, OVCAR3 and SKOV3 cancer cells (average (AV) and standard deviation (SD))   % cell viability:

average and standard deviation EPD Conc 24 hours 48 hours 72 hours μg/mL AV SD AV SD AV SD   Normal fibroblasts 1 102 2.5 107 3.9 105 3.3 5 105 6.3 108 1.6 72 2.1 10 101 10.1 112 1.8 47 4.6   OVCAR 3 1 96 5.1 101 7.4 109 29.2 5 87 6.7 67 4.5 50 14.4 10 70 7.4 23 0.9 21 6.4   SKOV 3 1 103 5.0 123 CYTH4 8.2 119 6.0 5 102 4.0 96 18.2 69 16.5 10 86 11.6 31 36.0 23 1.8 IC50 for OVCAR3 at 24 hours was 13 μg/mL (95% C.I. 10 to 18 μg/mL), at 48 hours 6.4 μg/mL (95% C.I. 5.3 to 7.8 μg/mL) and at 72 hours 5.3 μg/mL (95% C.I. 4.3 to 6.5 μg/mL). IC50 for SKOV3 at 24 hours was 16 μg/mL (95% C.I. 9.4 to 27 μg/mL), at 48 hours 8.4 μg/mL (95% C.I. 6.7 to 11 μg/mL) and at 72 hours 6.5 μg/mL (95% C.I. 5.2 to 8.3 μg/mL). In vivo pilot experiment Control mice only injected with the OVCAR3 cells, were killed when the ascites became a burden. EPD (at final concentration of 20 mg/kg b.w.) was administered i.p. twice/week for six weeks and Cisplatin (at final concentration of 5 mg/kg b.w.) was administered i.p. during 4 weeks, once/week. In general a similar cytotoxic effect was observed between EPD and Cisplatin on the OVCAR3 cells.

As seen in Table 3, the rectification factor dropped to 2 and 3,

As seen in Table 3, the rectification factor dropped to 2 and 3, close to that of the expected as-made membranes. The disappearance of rectification effect provided

supportive evidence that the functional anionically charged dye played as gatekeeper to modulate the ionic flux through DWCNT membranes. Table 3 Summary of ionic this website rectification factor on DWCNT membrane after water plasma oxidation to remove gatekeepers Concentration Rectification factor (mM) Potassium ferricyanide NDS Sodium benzenesulfonate 10 3.2 ± 0.3 1.7 ± 0.2 2.4 ± 0.2 50 2.8 ± 0.3 1.5 ± 0.07 2.0 ± 0.2 100 2.4 ± 0.2 1.4 ± 0.0.02 2.0 ± 0.2 Ferricyanide has a well-known redox potential of 0.17 V (vs. Ag/AgCl), and thus, an important control experiment was AG-014699 cost done to make sure that the observed rectification was not due to faradic current; instead, it was due to transmembrane ionic current. Cyclic voltammetry scans (−0.6 to 0.6 V) showed no redox reaction on both as-made and one-step functionalized DWCNT membranes in 50-mM ferricyanide (Additional file 3: Figure S3). We also did not observe redox reaction on glassy carbon in 2-mM ferricyanide, as seen in the flat curve in Additional file 4: Figure S4A. The much larger conductive

area of the glassy carbon electrode compared to 5% DWCNT membrane requires the use of more diluted (2 mM) ferricyanide solution. However, with the supporting 0.5-M electrolyte KCl solution, the oxidation and reduction peaks were observed at 0.29 and 0.06 V, which

were similar to those found in reports [30, 50]. The experiment was also repeated with both redox species. In Additional file 4: Methane monooxygenase Figure S4B, no redox peak was found on glassy carbon in 50-mM ferricyanide solution and 25-mM ferricyanide/ferricyanide solution. The control experiments of cyclic voltammetry on DWCNT membrane and glassy carbon ruled out the redox reaction of ferricyanide, which supports the ionic rectification on electrochemically grafted CNT membranes. The non-faradic (EIS) spectra indicated that the functionalized gatekeeper by a single step can be actuated to mimic the protein channel under bias. This functional chemistry was proven to be highly effective on the enhancement of ion rectification. The disappearance of rectification also supported its effectiveness after removing the grafted gatekeeper by plasma etching. Interestingly, no apparent change of rectification was seen for the two-step functionalization. The likely reason is that highly efficient functional density can be obtained by electrografting of amine in one step since the poor yield in the second step (carbodiimide coupling reaction) resulted in a significantly lower gatekeeper density on CNT membranes. To address this question, two- and one-step functionalizations were quantified using dye assay on glassy carbon due to its well-defined area and similar chemical reactivity to CNTs.

The average information depth of the present XPS measurement is l

The average information depth of the present XPS measurement is limited to approximately 8 to 10 atomic surface layers. One can see that with ongoing deposition, the concentration of silver increases, while the fluorine content decreases and becomes undetectable on the sample sputtered for 200 s. The decrease is due to the increasing masking effect of the growing Ag layer which at last becomes homogeneous and continuous. On the other hand, with decreasing thickness of Ag layer, its masking effect gradually declines, e.g., because of the appearance of cracks and discontinuities in the layer, and the chemical structure of the underlying PTFE becomes

visible in the XPS spectra. For the sputtering

time of 20 s, the measured fluorine concentration of 37.3 at.% FK506 is close to that of the pristine PTFE. The F/C ratio of silver-sputtered samples is markedly different from that of the pristine PTFE (F/C = 2:1) CP-690550 and may be due to the ability of silver to attract hydrocarbon contaminants from ambient atmosphere [27]. The thicker the sputtered layer, the lower the F/C ratio. This effect is most pronounced in the case of the thickest Ag layer (200-s sputtering time), where fluorine is not detected because of the masking effect of the silver coating. However, the concentration of carbon is still notable (54 at.%) in this case. The origin of carbon may completely be attributed to the contamination with hydrocarbons and other carbon-rich compounds from ambient atmosphere. XPS data (Table 1) also elucidate the processes in the course of the sample relaxation. During the 14 days of relaxation, the surface chemical composition changes significantly. A gradual decrease of the detected silver content, compared to that of the as-sputtered samples, occurs as a consequence of the tendency to minimize surface energy at the metal-polymer interface. This phenomenon has been frequently observed especially in the case of plasma-treated polymers,

where oxygen-containing groups reorient towards polymer volume in order to reduce surface energy in the contact with Nintedanib (BIBF 1120) ambient atmosphere [28]. Thus, the relaxation leads to segregation on the metal-polymer interface and boarding of cracks in the silver coating (Table 1, increase of fluorine content). This process favorably affects the surface wettability which finally stabilizes at a constant level (Figure 1). However, there are other concurrent processes that make the simple and straightforward explanation of the observed phenomena difficult (e.g., anomalous decrease of fluorine content for deposition time of 20 s, Table 1). This may particularly be caused by random, uncontrollable adsorption of hydrocarbons from ambient atmosphere during the relaxation process (see decrease of oxygen content at 100 and 200 s deposition times, Table 1).

Because of the focus on β-lactamase, the current study has concen

Because of the focus on β-lactamase, the current study has concentrated on β-lactam based probe constructs. However, the approach represents an optical platform using photoactivatable constructs that can be adapted for several targets that might confer antibiotic resistance. An interesting area of exploration is the use of the same technology for therapy where the constructs could be modified to specifically

target β-lactamase resistant bacteria [49], in a variation of photodynamic therapy [74, 75] that has shown promise in several indications of infections. Acknowledgements We thank Dr. Mary Jane Ferraro (Microbiology Labs, selleck chemicals Massachusetts General Hospital, Boston, MA, USA) for very helpful discussions and for providing the S. aureus clinical isolates. We are grateful to Dr. Robert L. Skov (Statens Serum Institut, Copenhagen, Denmark) for providing this website some of the genotype data. We would also like to thank Dr. Akilan Palanisami and Dr. Sarika Verma for involved discussions and input, and Dr.

S. Sibel Erdem for help in drawing chemical structures and proofreading. This research was funded by the Department of Defense/Air Force Office of Research (DOD/AFOSR) (Grant number FA9550-11-1-0331), and NIH/NIBIB (National Institute of Biomedical Imaging and Bioengineering) (Point of Care Technology in Primary Care) through CIMIT (Centre for Integration of Medicine and Innovation Technology) (Grant number U54 EB015408).

Electronic supplementary material Additional file 1: Figure S1: β-LEAF cleavage rates for ATCC control strains and bacteria free controls. Data from the two ATCC S. aureus control strains [known β-lactamase producer ATCC 29213 (#1) and non-producer ATCC 25923 (#2)] and PBS only control, with three antibiotics (cefazolin, cefoxitin and Doxorubicin order cefepime) is presented. The different samples were incubated with β-LEAF (probe) alone or β-LEAF and respective antibiotic, and fluorescence was monitored over 60 min. The y-axis represents the cleavage rate of β-LEAF (measured as fluorescence change rate – milliRFU/min) (Bacterial O.D. is not accounted for here). Results are presented as the average of four independent experiments (each experiment contained samples in triplicates) and error bars represent the standard error. (JPEG 75 KB) Additional file 2: Figure S2: Standard Disk diffusion assay to determine cefazolin susceptibility and zone edge test for β-lactamase detection. Representative Disk diffusion plates for the control strains S. aureus ATCC 29213 (#1) and ATCC 25923 (#2) are shown, with the cefazolin disk at the centre of the plate. The clear zone of inhibition and zone edges are indicated. #1 was used as a positive control for the zone edge test (sharp edge) and #2 as a negative control (fuzzy edge), following CLSI guidelines.

Conditions achieved through

Conditions achieved through selleck chemicals llc clinorotation are also referred to as weightlessness, modeled reduced gravity (MRG), simulated microgravity, or low-shear

modeled microgravity and hereafter are referred to as MRG in this paper. Clinorotation provides a cost-effective, accessible approach to study these conditions relative to space-based research and has been demonstrated to serve as an effective model for examining bacterial responses [19, 21]. Previous studies have shown that bacteria grown under either actual reduced gravity or MRG conditions, surprisingly, exhibit resistance to multiple antimicrobial methods [13, 22] and become more virulent, which has important potential impacts for human health [23, 24], reviewed by [25]. In addition, bacteria under these conditions have enhanced growth [26–28], secondary metabolite production [29], biofilm formation [30] and extracellular polysaccharide production [28]. Other studies have examined changes

in transcription (based on microarrays and real mTOR inhibitor time quantitative PCR) and proteomes [e.g., [31–33]] revealing the large scope of responses to these environmental conditions. The mechanisms behind the responses observed are largely unstudied [19]. Lastly, prior research has demonstrated that bacterial responses under actual reduced gravity conditions are similar to those in ground-based studies, demonstrating the effectiveness of this model [26, 27]. As noted above, a variety of metrics have been used to evaluate bacterial responses to MRG. However, few of these studies have examined cellular physiological properties or compared responses among else different bacterial

species (but see [34]; where growth responses of Sphingobacterium thalpophilium [a motile strain] and Ralstonia pickettii [a non-motile strain] under MRG and NG conditions were compared). Therefore, in this study we examined bacterial physiological properties under environmental conditions created by clinorotation. Specifically, Escherichia coli and Staphylococcus aureus responses to MRG and normal gravity (NG) conditions under different growth (nutrient-rich and -poor) conditions were examined by analysis of a suite of cellular parameters, including protein concentrations, cell volume, membrane potential, and membrane integrity. Parameters chosen vary with availability of nutrients [9, 10, 35, 36] and are correlated with the physiological status of the cell, including its viability [37–39]. Most of these parameters have not been studied in E. coli and S. aureus under MRG conditions and they provide critical information about bacterial “”health”" as well as microenvironmental conditions near bacteria.

Another surface marker, CD44, has also been used to isolate CSC f

Another surface marker, CD44, has also been used to isolate CSC from lung cancer [11]. A previous study using competitive RT-PCR to detect the expression of CD44

in urine for bladder cancer diagnosis was highly accurate and a potential non-invasive diagnostic marker for bladder cancer [12]. Transcription factors, Sox2, OCT4 and Nanog form a core regulatory network of self-renewal and differentiation in embryonic stem cells, which are essential in sustaining stem cell pluripotency [13]. Recent reports show that Sox2, OCT4 and Nanog are potential diagnostic markers for lung cancer [14–16]. Additionally, Musashi2 (Msi2), a RNA binding protein, play crucial roles in maintaining self-renewal and pluriopentency of embryonic stem cells. It have been demonstrated to participate in tumorigenesis and progression of multiple solid tumors [17, 18], and are expressed in lung cancer see more [10]. However, these studies which are mainly based on surgical specimens to screen for new molecular markers have certain limitations in clinical application because most lung cancers are unresectable. Bronchoscopy has become an essential method by which to analyze and diagnose lung cancer through technological advances

and its widespread application. Common bronchoscopy techniques including forceps biopsy, brushing and washing can easily obtained adequate specimens for histological, GS-1101 purchase cytological and

molecular biological analysis [19]. The purpose of this study is to investigate the differential and clinical significance of these stem-cell-associated markers in bronchoscopy biopsy specimens. In this study, we applied RT-PCR Benzatropine to examine the differential expression of Bmi1, CD133, CD44, Sox2, Nanog, OCT4 and Msi2 mRNA in bronchoscopic biopsy specimens from lung cancer and non-cancer patients. Furthermore immunohistochemistry was used to define the localization and expression patterns of these stem-cell-associated proteins in surgically resected lung cancer and non-malignant lung tissues. The diagnostic value of these seven stem-cell-associated markers was evaluated in lung cancer. Materials and methods Clinical samples from bronchoscope biopsy This prospective study in 112 patients with histologically proven lung cancer and 18 non-cancer patients was performed at Guilin Medical University Hospital and Affiliated Nan Xi Shan Hospital in China from January, 2011 to January, 2012. These 112 lung cancer patients included 94 males and 18 females ranging from 29 to 80 years of age (median = 59.2). Fifty-six cases were squamous cell carcinomas (SCC), 17 cases adenocarcinomas (Ad), 28 cases small cell lung carcinomas (SCLC) and 11 cases of other types of lung cancer.

Conclusions In the present study, we report

the existence

Conclusions In the present study, we report

the existence of a new pathway for arresting cell growth that involves the interaction of troglitazone-induced VEGF and NRP-1 in Seliciclib concentration NSCLC cells. This suggests that TZDs may be effective anti-cancer agents, and it may be possible to develop a new anti-cancer therapy if the mechanisms underlying these anti-cancer effects are better understood. Acknowledgements This work was supported by a Grant-in-Aid for Young Scientists (B) (20790562) to ST from the Ministry of Education, Science, Sports and Culture, Japan. References 1. Spiegelman BM: PPAR-gamma: Adipogenic regulator and thiazolidinedione receptor. Diabetes 1998, 47:507–514.PubMedCrossRef 2. Elstner E, Muller C, Koshizuka K, Williamson EA, Park D, Asou H, Shintaku P, Said JW, Heber D, Koeffler HP: Ligands for peroxisome proliferator-activated receptor gamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proceedings of the National

Academy of Sciences of the United States of America 1998, 95:8806–8811.PubMedCrossRef 3. Lambe KG, Tugwood JD: A human peroxisome-proliferator-activated receptor-gamma is activated by inducers of adipogenesis, including thiazolidinedione drugs. European Journal of Biochemistry 1996, 239:1–7.PubMedCrossRef 4. Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, Fletcher C, Singer S, Spiegelman BM: Terminal differentiation Tangeritin of human breast cancer through PPAR gamma. Molecular Cell 1998, 1:465–470.PubMedCrossRef selleck chemical 5. Takahashi N, Okumura T, Motomura L, Fujimoto Y, Kawabata I, Kohgo Y: Activation of PPAR gamma inhibits cell growth and induces apoptosis in human gastric cancer cells. Febs Letters 1999, 455:135–139.PubMedCrossRef 6. Heaney AP, Fernando M, Yong WH, Melmed S: Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting

pituitary adenomas. Nature Medicine 2002, 8:1281–1287.PubMedCrossRef 7. Keshamouni VG, Reddy RC, Arenberg DA, Joel B, Thannickal VJ, Kalemkerian GP, Standiford TJ: Peroxisome proliferator-activated receptor-gamma activation inhibits tumor progression in non-small-cell lung cancer. Oncogene 2004, 23:100–108.PubMedCrossRef 8. Kubota T, Koshizuka K, Williamson EA, Asou H, Said JW, Holden S, Miyoshi I, Koeffler HP: Ligand for peroxisome proliferator-activated receptor gamma (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Research 1998, 58:3344–3352.PubMed 9. Motomura W, Okumura T, Takahashi N, Obara T, Kohgo Y: Activation of peroxisome proliferator-activated receptor gamma by troglitazone inhibits cell growth through the increase of p27(Kip1) in human pancreatic carcinoma cells. Cancer Research 2000, 60:5558–5564.PubMed 10.