All patients were positive for HHV-8 infection, assessed by the presence of specific antibodies directed to antigens see more associated
with the lytic and/or latent phases of infection [22]. Testing for virologic parameters of HHV-8 infection was performed both on the learn more lesion tissue and on peripheral blood. In fact, several studies have reported a correlation between HHV-8 viral load and clinical disease progression, especially for AIDS-KS [11]. The presence of HHV-8 viral genomes in plasma was evaluated and quantified using quantitative PCR (HHV-8Q real time PCR, Nanogen, Torino, Italia), Baf-A1 cost with viral loads ranging from lower
than 125 to 840 genome equivalents/ml). In 9 patients, viral DNA was not detectable (Table 1). Table 1 Patient’s characteristics and ultrasound results Diagnosis Age Sex Clinical Stage Lesion (mm) HHV8-DNA (copies/mL) Ultrasound Pattern Color-Doppler Signals 1.CKS 70 M III A 6 652 HOMOG. NO 2.CKS 80 M I A 20 <125 HOMOG. NO 3.CKS 56 M I A 10 Undetectable HOMOG. NO 4.CKS 88 M IV B 10 <125 HOMOG. 50% 5.CKS 70 M II A 20 Undetectable HOMOG. NO 6.CKS 71 M IV B 10 250 HOMOG. 25% 7.CKS 87 F III A 7 520 HOMOG. NO 8.CKS 56 F II A 5 Undetectable HOMOG. NO 9.CKS 61 M I A 6 <125 DISHOMOG. NO 10.CKS 58 M I A 10 Undetectable HOMOG. NO 11.CKS 74 M I A 10 Undetectable HOMOG. NO 12.CKS 43 M I A <5 Undetectable HOMOG. NO 13.CKS 88 F III A 7 633 HOMOG. NO 14.CKS 56 M III A 8 750 HOMOG. NO 15.CKS 70 M III A 4 450 HOMOG. NO 16.CKS 70 M II A 10 <125 HOMOG. NO 17.AIDS-KS 41 M >12 6 Undetectable HOMOG. NO 18.AIDS-KS 47 M >12 4 <125 HOMOG. 25% 19.AIDS-KS 38 M >12 4 Undetectable CALCIF. NO 20.AIDS-KS 59 M >12 11 840 DISHOMOG. 50% 21.AIDS-KS 74 M >12 9 <125 DISHOMOG. 50% 22.AIDS-KS 46 M >12 7 230 HOMOG. 25% 23.AIDS-KS 49 M >12 7 <125 HOMOG. 25% 24.AIDS-KS 31 M >12 10 Undetectable DISHOMOG. 25% To obtain
a sample that was as homogeneous acetylcholine as possible, we only studied those lesions with a maximum diameter between 0.4 and 2 cm and which morphologically could be defined as plaques or nodular. All patients were evaluated with ultrasound by two experts in diagnostic dermatological ultrasound (FMS and FE), under blind conditions. The images were stored on digital support and then re-evaluated in consensus by both. The ultrasound examination was performed with My-Lab 70 XVG (Esaote, Genova, Italia), using a high-frequency linear array probe (18 Mhz); for lesions with a diameter of less than 1 cm, a MyLabOne (Esaote, Genova, Italia) was also used, with a linear array probe of 22 Mhz. The settings of the devices were optimized for slow flows and superficial lesions. Written informed consent was obtained from patients. A copy of written consent is available for review by the Editor-in-chief of this journal.